A local prime factor decomposition algorithm
نویسنده
چکیده
This work is concerned with the prime factor decomposition (PFD) of strong product graphs. A new quasi-linear time algorithm for the PFD with respect to the strong product for arbitrary, finite, connected, undirected graphs is derived. Moreover, since most graphs are prime although they can have a product-like structure, also known as approximate graph products, the practical application of the well-known ”classical” prime factorization algorithm is strictly limited. This new PFD algorithm is based on a local approach that covers a graph by small factorizable subgraphs and then utilizes this information to derive the global factors. Therefore, we can take advantage of this approach and derive in addition a method for the recognition of approximate graph products.
منابع مشابه
A Local Prime Factor Decomposition Algorithm for Strong Product Graphs
This work is concerned with the prime factor decomposition (PFD) of strong product graphs. A new quasi-linear time algorithm for the PFD with respect to the strong product for arbitrary, finite, connected, undirected graphs is derived. Moreover, since most graphs are prime although they can have a product-like structure, also known as approximate graph products, the practical application of the...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملAn efficient prime-factor algorithm for the discrete cosine transform and its hardware implementations
The prime-factor decomposition is a fast computational technique for many important digital signal processing operations, such as the convolution, the discrete Fourier transform, the discrete Hartley transform, and the discrete cosine transform (DCT). In this paper, we present a new prime-factor algorithm for the DCT. We also design a prime-factor algorithm for the discrete sine transform which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011